High dimensional semiparametric moment restriction models
نویسندگان
چکیده
We consider nonlinear moment restriction semiparametric models where both the dimension of parameter vector and number restrictions are divergent with sample size an unknown smooth function is involved. propose estimation method based on sieve generalized moments (sieve-GMM). establish consistency asymptotic normality for estimated quantities when parameters increases modestly size. also case potential parameters/covariates very large, i.e., rapidly size, but true model exhibits sparsity. use a penalized GMM approach to select relevant variables, oracle property our in this case. provide new results inference. several test statistics over-identification their large properties. simulation study application data from NLSY79 used by Carneiro et al. (2011).
منابع مشابه
High - dimensional semiparametric bigraphical models
In multivariate analysis, a Gaussian bigraphical model is commonly used for modelling matrixvalued data. In this paper, we propose a semiparametric extension of the Gaussian bigraphical model, called the nonparanormal bigraphical model. A projected nonparametric rank-based regularization approach is employed to estimate sparse precision matrices and produce graphs under a penalized likelihood f...
متن کاملHigh Dimensional Semiparametric Gaussian Copula Graphical Models
In this paper, we propose a semiparametric approach, named nonparanormal skeptic, for efficiently and robustly estimating high dimensional undirected graphical models. To achieve modeling flexibility, we consider Gaussian Copula graphical models (or the nonparanormal) as proposed by Liu et al. (2009). To achieve estimation robustness, we exploit nonparametric rank-based correlation coefficient ...
متن کاملinfinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملSemiparametric Quantile Regression with High-dimensional Covariates.
This paper is concerned with quantile regression for a semiparametric regression model, in which both the conditional mean and conditional variance function of the response given the covariates admit a single-index structure. This semiparametric regression model enables us to reduce the dimension of the covariates and simultaneously retains the flexibility of nonparametric regression. Under mil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Econometrics
سال: 2023
ISSN: ['1872-6895', '0304-4076']
DOI: https://doi.org/10.1016/j.jeconom.2021.07.004